Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Front Cell Neurosci ; 18: 1367838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644974

RESUMO

Variants in KCNT1 are associated with a wide spectrum of epileptic phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), non-EIMFS developmental and epileptic encephalopathies, autosomal dominant or sporadic sleep-related hypermotor epilepsy, and focal epilepsy. Here, we describe a girl affected by drug-resistant focal seizures, developmental delay and behavior disorders, caused by a novel, de novo heterozygous missense KCNT1 variant (c.2809A > G, p.S937G). Functional characterization in transiently transfected Chinese Hamster Ovary (CHO) cells revealed a strong gain-of-function effect determined by the KCNT1 p.S937G variant compared to wild-type, consisting in an increased maximal current density and a hyperpolarizing shift in current activation threshold. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant KCNT1 channels. Treatment of the proband with fluoxetine led to a prolonged electroclinical amelioration, with disappearance of seizures and better EEG background organization, together with an improvement in behavior and mood. Altogether, these results suggest that, based on the proband's genetic and functional characteristics, the antidepressant drug fluoxetine may be repurposed for the treatment of focal epilepsy caused by gain-of-function variants in KCNT1. Further studies are needed to verify whether this approach could be also applied to other phenotypes of the KCNT1-related epilepsies spectrum.

2.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284124

RESUMO

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Assuntos
Barreira Hematoencefálica , Carbamatos , Epilepsia , Fenilenodiaminas , Animais , Ratos , Células Endoteliais , Ácido Caínico/toxicidade , Encéfalo
3.
Neurotherapeutics ; 21(1): e00296, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241158

RESUMO

While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n â€‹= â€‹1) or G239S variant (n â€‹= â€‹2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 â€‹mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.


Assuntos
Amitriptilina , Epilepsia , Recém-Nascido , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Mutação com Ganho de Função , Fenótipo , Convulsões , Canal de Potássio KCNQ2/genética
4.
Ann Neurol ; 95(2): 365-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964487

RESUMO

OBJECTIVE: Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. METHODS: Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. RESULTS: Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from "pure" loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to "mixed" loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. INTERPRETATION: We describe a novel association of de novo missense variants in KCNA3 with a human DEE, and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects. ANN NEUROL 2024;95:365-376.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Animais , Humanos , Fluoxetina , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/complicações , Mutação de Sentido Incorreto/genética , Mamíferos , Canal de Potássio Kv1.3/genética
5.
Geriatrics (Basel) ; 8(5)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37736884

RESUMO

BACKGROUND: Pharmacogenomic factors affect the susceptibility to drug-drug interactions (DDI). We identified drug interaction perpetrators among the drugs prescribed to a cohort of 290 older adults and analysed the prevalence of gene polymorphisms that can increase their interacting potential. We also pinpointed clinical decision support systems (CDSSs) that incorporate pharmacogenomic factors in DDI risk evaluation. METHODS: Perpetrator drugs were identified using the Drug Interactions Flockhart Table, the DRUGBANK website, and the Mayo Clinic Pharmacogenomics Association Table. Allelic variants affecting their activity were identified with the PharmVar, PharmGKB, dbSNP, ensembl and 1000 genome databases. RESULTS: Amiodarone, amlodipine, atorvastatin, digoxin, esomperazole, omeprazole, pantoprazole, simvastatin and rosuvastatin were perpetrator drugs prescribed to >5% of our patients. Few allelic variants affecting their perpetrator activity showed a prevalence >2% in the European population: CYP3A4/5*22, *1G, *3, CYP2C9*2 and *3, CYP2C19*17 and *2, CYP2D6*4, *41, *5, *10 and *9 and SLC1B1*15 and *5. Few commercial CDSS include pharmacogenomic factors in DDI-risk evaluation and none of them was designed for use in older adults. CONCLUSIONS: We provided a list of the allelic variants influencing the activity of drug perpetrators in older adults which should be included in pharmacogenomics-oriented CDSSs to be used in geriatric medicine.

6.
EMBO Mol Med ; 15(7): e17159, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366158

RESUMO

Rare diseases affect over 400 million people worldwide and less than 5% of rare diseases have an approved treatment. Fortunately, the number of underlying disease etiologies is far less than the number of diseases, because many rare diseases share a common molecular etiology. Moreover, many of these shared molecular etiologies are therapeutically actionable. Grouping rare disease patients for clinical trials based on the underlying molecular etiology, rather than the traditional, symptom-based definition of disease, has the potential to greatly increase the number of patients gaining access to clinical trials. Basket clinical trials based on a shared molecular drug target have become common in the field of oncology and have been accepted by regulatory agencies as a basis for drug approvals. Implementation of basket clinical trials in the field of rare diseases is seen by multiple stakeholders-patients, researchers, clinicians, industry, regulators, and funders-as a solution to accelerate the identification of new therapies and address patient's unmet needs.


Assuntos
Aprovação de Drogas , Doenças Raras , Humanos , Doenças Raras/tratamento farmacológico
7.
Epilepsia ; 64(7): e148-e155, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203213

RESUMO

Variable phenotypes, including developmental encephalopathy with (DEE) or without seizures and myoclonic epilepsy and ataxia due to potassium channel mutation, are caused by pathogenetic variants in KCNC1, encoding for Kv3.1 channel subunits. In vitro, channels carrying most KCNC1 pathogenic variants display loss-of-function features. Here, we describe a child affected by DEE with fever-triggered seizures, caused by a novel de novo heterozygous missense KCNC1 variant (c.1273G>A; V425M). Patch-clamp recordings in transiently transfected CHO cells revealed that, compared to wild-type, Kv3.1 V425M currents (1) were larger, with membrane potentials between -40 and +40 mV; (2) displayed a hyperpolarizing shift in activation gating; (3) failed to inactivate; and (4) had slower activation and deactivation kinetics, consistent with a mixed functional pattern with prevalent gain-of-function effects. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant Kv3.1 channels. Treatment of the proband with fluoxetine led to a rapid and prolonged clinical amelioration, with the disappearance of seizures and an improvement in balance, gross motor skills, and oculomotor coordination. These results suggest that drug repurposing based on the specific genetic defect may provide an effective personalized treatment for KCNC1-related DEEs.


Assuntos
Epilepsias Mioclônicas , Convulsões Febris , Cricetinae , Animais , Fluoxetina/uso terapêutico , Cricetulus , Medicina de Precisão , Mutação com Ganho de Função , Convulsões/genética , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética
8.
Ann Neurol ; 94(2): 332-349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062836

RESUMO

OBJECTIVE: Pathogenic variants in KCNT2 are rare causes of developmental epileptic encephalopathy (DEE). We herein describe the phenotypic and genetic features of patients with KCNT2-related DEE, and the in vitro functional and pharmacological properties of KCNT2 channels carrying 14 novel or previously untested variants. METHODS: Twenty-five patients harboring KCNT2 variants were investigated: 12 were identified through an international collaborative network, 13 were retrieved from the literature. Clinical data were collected and included in a standardized phenotyping sheet. Novel variants were detected using exome sequencing and classified using ACMG criteria. Functional and pharmacological studies were performed by whole-cell electrophysiology in HEK-293 and SH-SY5Y cells. RESULTS: The phenotypic spectrum encompassed: (a) intellectual disability/developmental delay (21/22 individuals with available information), ranging from mild to severe/profound; (b) epilepsy (15/25); (c) neurological impairment, with altered muscle tone (14/22); (d) dysmorphisms (13/20). Nineteen pathogenic KCNT2 variants were found (9 new, 10 reported previously): 16 missense, 1 in-frame deletion of a single amino acid, 1 nonsense, and 1 frameshift. Among tested variants, 8 showed gain-of-function (GoF), and 6 loss-of-function (LoF) features when expressed heterologously in vitro. Quinidine and fluoxetine blocked all GoF variants, whereas loxapine and riluzole activated some LoF variants while blocking others. INTERPRETATION: We expanded the phenotypic and genotypic spectrum of KCNT2-related disorders, highlighting novel genotype-phenotype associations. Pathogenic KCNT2 variants cause GoF or LoF in vitro phenotypes, and each shows a unique pharmacological profile, suggesting the need for in vitro functional and pharmacological investigation to enable targeted therapies based on the molecular phenotype. ANN NEUROL 2023;94:332-349.


Assuntos
Deficiência Intelectual , Neuroblastoma , Humanos , Células HEK293 , Fenótipo , Genótipo , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Canais de Potássio Ativados por Sódio/genética
9.
J Clin Med ; 12(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902830

RESUMO

OBJECTIVE: To report for the first time an Italian epidemiological analysis of the prevalence of multiple sclerosis (MS) in patients with endometriosis (EMS), through the study of the endometriosis population of our referral center; to analyze the clinical profile and perform a laboratory analysis to examine the immune profile and the possible correlation to other autoimmune diseases of the enrolled patients. METHODS: We evaluated 1652 women registered with EMS in the University of Naples Federico II and retrospectively searched patients with a co-diagnosis of MS. Clinical features of both conditions were recorded. Serum autoantibody and immune profiles were analyzed. RESULTS: 9 out of 1652 patients presented a co-diagnosis of EMS and MS (9/1652 = 0.005%). Clinically, EMS and MS presented in mild forms. Hashimoto's thyroiditis was found in two patients (2/9). Even if not statistically significant, a trend of variation in CD4- CD8 T lymphocytes and of B cells were found. CONCLUSION: Our findings suggest an increased risk of MS in women with EMS. However, large-scale prospective studies are needed.

10.
Neurobiol Dis ; 174: 105860, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113748

RESUMO

KCNQ2-encoded Kv7.2 subunits play a critical role in balancing neuronal excitability. Mutations in KCNQ2 are responsible for highly-heterogenous epileptic and neurodevelopmental phenotypes ranging from self-limited familial neonatal epilepsy (SeLFNE) to severe developmental and epileptic encephalopathy (DEE). Pathogenic KCNQ2 variants cluster at the voltage sensor domain (VSD), the pore domain, and the C-terminal tail. Although several knock-in mice harboring Kcnq2 pore variants have been developed, no mouse line carrying Kcnq2 voltage-sensor mutations has been described. KCNQ2-R207W is an epilepsy-causing mutation located in the VSD, mainly affecting voltage-dependent channel gating. To study the physiological consequence of Kcnq2 VSD dysfunction, we generated a Kcnq2-R207W mouse line and analyzed the pathological and pharmacological phenotypes of mutant mice. As a result, both homozygous (Kcnq2RW/RW) and heterozygous (Kcnq2RW/+) mice were viable. While Kcnq2RW/RW mice displayed a short lifespan, growth retardation, and spontaneous seizures, Kcnq2RW/+ mice survived and developed normally, although only a fraction (9/64; 14%) of them showed behavioral- and ECoG-confirmed spontaneous seizures. Kcnq2RW/+ mice displayed increased susceptibility to evoked seizures, which was dramatically ameliorated by treatment with the novel KCNQ opener pynegabine (HN37). Our results show that the Kcnq2-R207W mouse line, the first harboring a Kcnq2 voltage-sensor mutation, exhibits a unique epileptic phenotype with both spontaneous seizures and increased susceptibility to evoked seizures. In Kcnq2-R207W mice, the potent KCNQ opener HN37, currently in clinical phase I, shows strong anticonvulsant activity, suggesting it may represent a valuable option for the severe phenotypes of KCNQ2-related epilepsy.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Animais , Camundongos , Canal de Potássio KCNQ2/genética , Epilepsia/genética , Fenótipo , Mutação/genética , Convulsões/genética , Proteínas do Tecido Nervoso/genética
11.
J Med Chem ; 65(16): 11340-11364, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35972998

RESUMO

Neuronal Kv7 channels represent important pharmacological targets for hyperexcitability disorders including epilepsy. Retigabine is the prototype Kv7 activator clinically approved for seizure treatment; however, severe side effects associated with long-term use have led to its market discontinuation. Building upon the recently described cryoEM structure of Kv7.2 complexed with retigabine and on previous structure-activity relationship studies, a small library of retigabine analogues has been designed, synthesized, and characterized for their Kv7 opening ability using both fluorescence- and electrophysiology-based assays. Among all tested compounds, 60 emerged as a potent and photochemically stable neuronal Kv7 channel activator. Compared to retigabine, compound 60 displayed a higher brain/plasma distribution ratio, a longer elimination half-life, and more potent and effective anticonvulsant effects in an acute seizure model in mice. Collectively, these data highlight compound 60 as a promising lead compound for the development of novel Kv7 activators for the treatment of hyperexcitability diseases.


Assuntos
Anticonvulsivantes , Canal de Potássio KCNQ3 , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Carbamatos , Canal de Potássio KCNQ2 , Camundongos , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
12.
EBioMedicine ; 81: 104130, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35780567

RESUMO

BACKGROUND: Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. METHODS: Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. FINDINGS: Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. INTERPRETATION: Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. FUNDING: Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.


Assuntos
Transtorno Autístico , Epilepsia , Doenças do Recém-Nascido , Transtornos do Desenvolvimento da Linguagem , Amitriptilina , Mutação com Ganho de Função , Humanos , Recém-Nascido , Canal de Potássio KCNQ2/genética , Convulsões
13.
Front Immunol ; 13: 880412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711458

RESUMO

IgE-mediated release of proinflammatory mediators and cytokines from basophils and mast cells is a central event in allergic disorders. Several groups of investigators have demonstrated the presence of autoantibodies against IgE and/or FcεRI in patients with chronic spontaneous urticaria. By contrast, the prevalence and functional activity of anti-IgE autoantibodies in atopic dermatitis (AD) are largely unknown. We evaluated the ability of IgG anti-IgE from patients with AD to induce the in vitro IgE-dependent activation of human basophils and skin and lung mast cells. Different preparations of IgG anti-IgE purified from patients with AD and rabbit IgG anti-IgE were compared for their triggering effects on the in vitro release of histamine and type 2 cytokines (IL-4, IL-13) from basophils and of histamine and lipid mediators (prostaglandin D2 and cysteinyl leukotriene C4) from human skin and lung mast cells. One preparation of human IgG anti-IgE out of six patients with AD induced histamine release from basophils, skin and lung mast cells. This preparation of human IgG anti-IgE induced the secretion of cytokines and eicosanoids from basophils and mast cells, respectively. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Human anti-IgE was more potent than rabbit anti-IgE for IL-4 and IL-13 production by basophils and histamine, prostaglandin D2 and leukotriene C4 release from mast cells. Functional anti-IgE autoantibodies rarely occur in patients with AD. When present, they induce the release of proinflammatory mediators and cytokines from basophils and mast cells, thereby possibly contributing to sustained IgE-dependent inflammation in at least a subset of patients with this disorder.


Assuntos
Basófilos , Dermatite Atópica , Animais , Autoanticorpos/farmacologia , Citocinas/farmacologia , Eicosanoides , Histamina , Humanos , Imunoglobulina E , Imunoglobulina G/farmacologia , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Leucotrieno C4 , Mastócitos , Prostaglandinas , Coelhos
14.
Front Pharmacol ; 13: 872645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770094

RESUMO

Pathogenic variants in KCNQ2 encoding for Kv7.2 potassium channel subunits have been found in patients affected by widely diverging epileptic phenotypes, ranging from Self-Limiting Familial Neonatal Epilepsy (SLFNE) to severe Developmental and Epileptic Encephalopathy (DEE). Thus, understanding the pathogenic molecular mechanisms of KCNQ2 variants and their correlation with clinical phenotypes has a relevant impact on the clinical management of these patients. In the present study, the genetic, biochemical, and functional effects prompted by two variants, each found in a non-familial SLNE or a DEE patient but both affecting nucleotides at the KCNQ2 intron 6-exon 7 boundary, have been investigated to test whether and how they affected the splicing process and to clarify whether such mechanism might play a pathogenetic role in these patients. Analysis of KCNQ2 mRNA splicing in patient-derived lymphoblasts revealed that the SLNE-causing intronic variant (c.928-1G > C) impeded the use of the natural splice site, but lead to a 10-aa Kv7.2 in frame deletion (Kv7.2 p.G310Δ10); by contrast, the DEE-causing exonic variant (c.928G > A) only had subtle effects on the splicing process at this site, thus leading to the synthesis of a full-length subunit carrying the G310S missense variant (Kv7.2 p.G310S). Patch-clamp recordings in transiently-transfected CHO cells and primary neurons revealed that both variants fully impeded Kv7.2 channel function, and exerted strong dominant-negative effects when co-expressed with Kv7.2 and/or Kv7.3 subunits. Notably, Kv7.2 p.G310S, but not Kv7.2 p.G310Δ10, currents were recovered upon overexpression of the PIP2-synthesizing enzyme PIP5K, and/or CaM; moreover, currents from heteromeric Kv7.2/Kv7.3 channels incorporating either Kv7.2 mutant subunits were differentially regulated by changes in PIP2 availability, with Kv7.2/Kv7.2 G310S/Kv7.3 currents showing a greater sensitivity to PIP2 depletion when compared to those from Kv7.2/Kv7.2 G310Δ10/Kv7.3 channels. Altogether, these results suggest that the two variants investigated differentially affected the splicing process at the intron 6-exon 7 boundary, and led to the synthesis of Kv7.2 subunits showing a differential sensitivity to PIP2 and CaM regulation; more studies are needed to clarify how such different functional properties contribute to the widely-divergent clinical phenotypes.

16.
Proc Natl Acad Sci U S A ; 119(15): e2116887119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377796

RESUMO

Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.


Assuntos
Epilepsia Resistente a Medicamentos , Mutação com Ganho de Função , Canais de Potássio KCNQ , Adolescente , Criança , Epilepsia Resistente a Medicamentos/genética , Feminino , Humanos , Canais de Potássio KCNQ/genética , Masculino , Mutação , Fenótipo , Probabilidade
17.
Biochem Pharmacol ; 197: 114931, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085542

RESUMO

Mitochondrial K+ permeability regulates neuronal apoptosis, energy metabolism, autophagy, and protection against ischemia-reperfusion injury. Kv7.4 channels have been recently shown to regulate K+ permeability in cardiac mitochondria and exert cardioprotective effects. Here, the possible expression and functional role of Kv7.4 channels in regulating membrane potential, radical oxygen species (ROS) production, and Ca2+ uptake in neuronal mitochondria was investigated in both clonal (F11 cells) and native brain neurons. In coupled mitochondria isolated from F11 cells, K+-dependent changes of mitochondrial membrane potential (ΔΨ) were unaffected by the selective mitoBKCa channel blocker iberiotoxin and only partially inhibited by the mitoKATP blockers glyburide or ATP. Interestingly, K+-dependent ΔΨ decrease was significantly reduced by the Kv7 blocker XE991 and enhanced by the Kv7 activator retigabine. Among Kv7s, western blot experiments showed the expression of only Kv7.4 subunits in F11 mitochondrial fractions; immunocytochemistry experiments showed a strong overlap between the Kv7.4 fluorescent signal and that of the mitochondrial marker Mitotracker. Silencing of Kv7.4 expression significantly suppressed retigabine-dependent decrease in ΔΨ in intact F11 cells. Expression of Kv7.4 subunits was also detected by western blot in isolated mitochondria from total mouse brain and by immunofluorescence in mouse primary cortical neurons. Pharmacological experiments revealed a relevant functional role for Kv7.4 channels in regulating membrane potential and Ca2+ uptake in isolated neuronal mitochondria, as well as ΔΨ and ROS production in intact cortical neurons. In conclusion, these findings provide the first experimental evidence for the expression of Kv7.4 channels and their contribution in regulating K+ permeability of neuronal mitochondria.


Assuntos
Canais de Potássio KCNQ/biossíntese , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Potássio/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Glibureto/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Gravidez
19.
Pediatr Neurol ; 128: 16-19, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032885

RESUMO

BACKGROUND: There is a gap of knowledge regarding cerebrospinal fluid (CSF) ion concentrations in normal and pathological states, particularly during the neonatal period. We aim to compare CSF ion concentrations in newborns with different causes of neonatal-onset epilepsy (NOE) and acute symptomatic seizures (ASS) and controls, to examine their usefulness for diagnostic purposes. METHODS: A descriptive retrospective study was conducted from January 2019 to June 2020 in a tertiary hospital. We analyzed CSF K+, Na+, Cl-, and Ca2+ concentrations in frozen samples from patients with neonatal seizures (NS) secondary to NOE and ASS (neonatal arterial ischemic stroke [NAIS] and hypoxic-ischemic encephalopathy). As the control group, we selected CSF samples from newborns who had undergone CSF analysis as part of the diagnostic workup and in whom central nervous system infections had been ruled out, without signs of dehydration, gastroenteritis, or history of seizures. RESULTS: Sixty-eight newborns were included, 16 with NOE, 13 with ASS, and 39 without NS (control group). In comparison with the control group, [K+]CSF was lower in patients with KCNQ2-related epilepsy (P = 0.007), other causes of NOE (P = 0.010), and NAIS (P = 0.002). Changes in [Na+]CSF, [Cl-]CSF, and [Ca2+]CSF were less consistent among subgroups. CONCLUSIONS: Here we report for the first time ionic imbalances in the CSF of neonates with NOE and NAIS. No differences were observed between newborns with different causes of NS. Further studies should be undertaken to investigate the physiopathology behind these changes and their impact on biological function.


Assuntos
Íons/líquido cefalorraquidiano , Convulsões/líquido cefalorraquidiano , Fatores Etários , Cálcio , Cloretos , Feminino , Humanos , Recém-Nascido , Íons/sangue , Masculino , Potássio , Estudos Retrospectivos , Convulsões/sangue , Convulsões/etiologia , Sódio
20.
Epilepsia ; 63(1): e7-e14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778950

RESUMO

A wide phenotypic spectrum of neurological diseases is associated with KCNA1 (Kv1.1) variants. To investigate the molecular basis of such a heterogeneous clinical presentation and identify the possible correlation with in vitro phenotypes, we compared the functional consequences of three heterozygous de novo variants (p.P403S, p.P405L, and p.P405S) in Kv1.1 pore region found in four patients with severe developmental and epileptic encephalopathy (DEE), with those of a de novo variant in the voltage sensor (p.A261T) identified in two patients with mild, carbamazepine-responsive, focal epilepsy. Patch-clamp electrophysiology was used to investigate the functional properties of mutant Kv1.1 subunits, both expressed as homomers and heteromers with wild-type Kv1.1 subunits. KCNA1 pore mutations markedly decreased (p. P405S) or fully suppressed (p. P403S, p. P405L) Kv1.1-mediated currents, exerting loss-of-function (LoF) effects. By contrast, channels carrying the p.A261T variant exhibited a hyperpolarizing shift of the activation process, consistent with a gain-of-function (GoF) effect. The present results unveil a novel correlation between in vitro phenotype (GoF vs LoF) and clinical course (mild vs severe) in KCNA1-related phenotypes. The excellent clinical response to carbamazepine observed in the patients carrying the A261T variant suggests an exquisite sensitivity of KCNA1 GoF to sodium channel inhibition that should be further explored.


Assuntos
Epilepsia , Carbamazepina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Canal de Potássio Kv1.1/genética , Mutação/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...